Abstract
Although the ecological function of dark septate endophytes (DSEs) is well studied, little is known about the responses of the host plant to DSEs obtained from other plants, especially under conditions of heavy metal stress. This study aimed to investigate how DSEs from a heavy-metal habitat affect non-host plants in cadmium (Cd) stress soils, which then provides a basis for the application of DSEs in the cultivation of different plant and soil remediation strategies for polluted ecosystems. We isolated and identified two species of DSE (Acrocalymma vagum and Scytalidium lignicola) inhabiting the roots of Ilex chinensis (host plant) which are grown in metal-polluted habitats. Then, the Cd stress tolerance of the DSEs was tested using a pure culture of which the Cd concentration has been adjusted. Subsequently, we examined the performance of non-host plants (Medicago sativa and Ammopiptanthus mongolicus) which were inoculated with DSEs under Cd stress in a growth chamber. The results indicated that the two DSEs could grow under Cd stress in vitro, even when not exhibiting high levels of tolerance to Cd. The superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), soluble protein, and melanin of the DSE fungi reached maximal levels at concentrations of 30–60 mg Cd/L, indicating the important preventive strategies adopted by the DSE fungi in environments contaminated by Cd. Despite a decreased biomass of DSE hyphae with enhanced Cd concentrations, the accumulation of Cd in the DSE hyphae tended to show an increasing trend. Both DSEs were effective colonizers of the non-host plants. A. vagum and S. lignicola inoculation significantly promoted the biomass and the root architecture of the two non-host plants under Cd stress. A. vagum inoculation increased the total nitrogen (TN) of A. mongolicus, whereas inoculation with S. lignicola significantly increased the organic carbon (OC) of M. sativa. In particular, the DSE inoculation significantly improved the accumulation of Cd in plant tissues under Cd stress, demonstrating a potential application in the bio-remediation of heavy-metal-pollution areas. Our findings suggest that the DSE inoculation improved the root growth and nutrient absorption of non-host plants, altered the soil Cd concentration, and facilitated plant growth and survival under Cd stress. These results contribute to a better understanding of DSE–plant interactions in habitats contaminated by heavy metals.
Highlights
Heavy metal pollution adversely affects the growth of plants and the soil ecosystem (Gallego et al, 2012)
This study aimed to investigate how the Dark septate endophytes (DSEs) from a host plant (Ilex chinensis) grown in habitats polluted by heavy metals affect the growth of non-host plants (Medicago sativa and Ammopiptanthus mongolicus) under Cd stress
We addressed the following questions: (1) Do DSE strains from heavy-metal-contaminated environments exhibit high tolerance to Cd stress in vitro? (2) Could inoculation with the DSE fungi facilitate the growth of non-host plants under Cd stress? If so, (3) could Cd stress influence the association between plants and DSE fungi?
Summary
Heavy metal pollution adversely affects the growth of plants and the soil ecosystem (Gallego et al, 2012). The plants respond both directly and indirectly to the changes in the soil’s environment. Previous studies have reported that the association between the symbiotic fungi and the host plants may influence the response of plants to heavy metal stress and improve the resistance of plants to various environmental stresses (Li et al, 2011; He et al, 2017). It is important to identify more beneficial fungi that can be used in the cultivation of various plants and in soil remediation strategies for polluted ecosystems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.