Abstract

The ecological mechanism underlying nocturnal stomatal conductance (gsn ) in C3 and C4 plants remains elusive. In this study, we proposed a 'coordinated leaf trait' hypothesis to explain gsn in rice plants. We conducted an open-field experiment by applying drought, nutrient stressand the combined drought-nutrient stress. We found that gsn was neither strongly reduced by drought nor consistently increased by nutrient stress. With the aforementioned multiple abiotic stressors considered as random effects, gsn exhibited a strong positive correlation with dark respiration (Rn ). Notably, gsn primed early morning (5:00-7:00) photosynthesis through faster stomatal response time. This photosynthesis priming effect diminished after mid-morning (9:00). Leaves were cooled by gsn -derived transpiration. However, our results clearly suggest that evaporative cooling did not reduce dark respiration cost. Our results indicate that gsn is more closely related to carbon respiration and assimilation than water and nutrient availability, and that dark respiration can explain considerable variation of gsn .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.