Abstract

Neurons in the superficial layers of the midbrain superior colliculus (SC) exhibit distinct tuning properties for visual stimuli, but, unlike neurons in the geniculocortical visual pathway, most respond best to visual stimuli that are smaller than the classical receptive field (RF). The mechanism underlying this size selectivity may depend on the number and pattern of feedforward retinal inputs and/or the balance between inhibition and excitation within the RF. We have previously shown that chronic blockade of NMDA receptors (NMDA-R), which increases the convergence of retinal afferents onto SC neurons, does not alter size selectivity in the SC. This suggests that the number of retinal inputs does not determine size selectivity. Here we show, using single unit extracellular recordings from the SC of normal hamsters, that size selectivity in neurons selective for small stimulus size is correlated with the strength of inhibition within the RF. We also show that dark rearing causes concomitant reductions in both inhibition and size selectivity. In addition, dark rearing increases the percentage of neurons non-selective for stimulus size. Finally, we show that chronic blockade of NMDA-R, a procedure that does not alter size tuning, also does not change the strength of inhibition within the RF. Taken together, these results argue that inhibition within the RF underlies selectivity for small stimulus size and that inhibition must be intact for size tuning to be preserved after developmental manipulations of activity. In addition, these results suggest that regulation of the balance between excitation and inhibition within the RF does not require NMDA-R activity but does depend on visual experience. These results suggest that developmental experience influences neural response properties through an alteration of inhibitory circuitry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call