Abstract

Motivated by the stunning projections for future CMB surveys, we evaluate the amount of dark radiation produced in the early Universe by two-body decays or binary scatterings with thermal bath particles via a rigorous analysis in momentum space. We track the evolution of the dark radiation phase space distribution, and we use the asymptotic solution to evaluate the amount of additional relativistic energy density parameterized in terms of an effective number of additional neutrino species ΔN eff. Our approach allows for studying light particles that never reach equilibrium across cosmic history, and to scrutinize the physics of the decoupling when they thermalize instead. We incorporate quantum statistical effects for all the particles involved in the production processes, and we account for the energy exchanged between the visible and invisible sectors. Non-instantaneous decoupling is responsible for spectral distortions in the final distributions, and we quantify how they translate into the corresponding value for ΔN eff. Finally, we undertake a comprehensive comparison between our exact results and approximated methods commonly employed in the existing literature. Remarkably, we find that the difference can be larger than the experimental sensitivity of future observations, justifying the need for a rigorous analysis in momentum space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.