Abstract

We point out that if the sector associated with the Standard Model degrees of freedom entered an open string Hagedorn phase in the early universe while the dark radiation sector was not part of this plasma, then this can lead to low values of the observable $\Delta N_{\text{eff}}$ (number of additional neutrinolike species) from the dark radiation. For explicit analysis, we focus on warped string compactifications with the Standard Model degrees of freedom at the bottom of a warped throat. If the Hubble scale during inflation is above the warped string scale associated with the throat, then the Standard Model sector will enter the Hagedorn phase. In this scenario, bulk axions are no longer dangerous from the point of view of dark radiation. While this article focuses on warped compactifications, the basic idea can be relevant to any scenario where the early universe entered a Hagedorn phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call