Abstract

We show that a scalar and a fermion charged under a global U(1) symmetry can not only explain the existence and abundance of dark matter (DM) and dark radiation (DR), but can also imbue DM with improved scattering properties at galactic scales, while remaining consistent with all other observations. Delayed DM-DR kinetic decoupling eases the missing satellites problem, while scalar-mediated self-interactions of DM ease the cusp versus core and too big to fail problems. In this scenario, DM is expected to be pseudo-Dirac and have a mass 100 keV ≲ m(χ) ≲ 10 GeV. The predicted DR may be measurable using the primordial elemental abundances from big bang nucleosynthesis, and using the cosmic microwave background.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call