Abstract

There is a long-standing discrepancy between the neutron lifetime measured in beam and bottle experiments. We propose to explain this anomaly by a dark decay channel for the neutron, involving a dark sector particle in the final state. If this particle is stable, it can be the dark matter. Its mass is close to the neutron mass, suggesting a connection between dark and baryonic matter. In the most interesting scenario a monochromatic photon with energy in the range 0.782 MeV – 1.664 MeV and branching fraction 1% is expected in the final state. We construct representative particle physics models consistent with all experimental constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.