Abstract

We study off-limb emission of the lower solar atmosphere using high-resolution imaging spectroscopy in the H$\beta$ and Ca II 8542 \r{A} lines obtained with the CHROMospheric Imaging Spectrometer (CHROMIS) and the CRisp Imaging SpectroPolarimeter (CRISP) on the Swedish 1-m Solar Telescope. The H$\beta$ line wing images show the dark intensity gap between the photospheric limb and chromosphere which is absent in the Ca II images. We calculate synthetic spectra of the off-limb emissions with the RH code in the one-dimension spherical geometry and find good agreement with the observations. The analysis of synthetic line profiles shows that the gap in the H$\beta$ line wing images maps the temperature minimum region between the photosphere and chromosphere due to the well known opacity and emissivity gap of Balmer lines in this layer. However, observed gap is detected farther from the line core in the outer line wing positions than in the synthetic profiles. We found that an increased microturbulence in the model chromosphere is needed to reproduce the dark gap in the outer line wing, suggesting that observed H$\beta$ gap is the manifestation of the temperature minimum and the dynamic nature of the solar chromosphere. The temperature minimum produces a small enhancement in synthetic Ca II line-wing intensities. Observed off-limb Ca II line-wing emissions show similar enhancement below temperature minimum layer near the edge of the photospheric limb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call