Abstract

While dark matter self-interactions may solve several problems with structure formation, so far only the effects of two-body scatterings of dark matter particles have been considered. We show that, if a subdominant component of dark matter is charged under an unbroken U(1) gauge group, collective dark plasma effects need to be taken into account to understand its dynamics. Plasma instabilities can lead to collisionless dark matter shocks in galaxy cluster mergers which might have been already observed in the Abell 3827 and 520 clusters. As a concrete model we propose a thermally produced dark pair plasma of vector-like fermions. In this scenario the interacting dark matter component is expected to be separated from the stars and the non-interacting dark matter halos in cluster collisions. In addition, the missing satellite problem is softened, while constraints from all other astrophysical and cosmological observations are avoided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.