Abstract

Increasingly stringent limits from LHC searches for new physics, coupled with lack of convincing signals of weakly interacting massive particle (WIMP) in dark matter searches, have tightly constrained many realizations of the standard paradigm of thermally produced WIMPs as cold dark matter. In this article, we review more generally both thermally and non-thermally produced dark matter (DM). One may classify DM models into two broad categories: one involving bosonic coherent motion (BCM) and the other involving WIMPs. BCM and WIMP candidates need, respectively, some approximate global symmetries and almost exact discrete symmetries. Supersymmetric axion models are highly motivated since they emerge from compelling and elegant solutions to the two fine-tuning problems of the Standard Model: the strong CP problem and the gauge hierarchy problem. We review here non-thermal relics in a general setup, but we also pay particular attention to the rich cosmological properties of various aspects of mixed SUSY/axion dark matter candidates which can involve both WIMPs and BCM in an interwoven manner. We also review briefly a panoply of alternative thermal and non-thermal DM candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call