Abstract

ABSTRACT It has been hypothesized that dark matter is comprised of ultra-light bosons whose collective phenomena can be described as a scalar field undergoing coherent oscillations. Examples include axion and fuzzy dark matter models. In this ultra-light dark matter (ULDM) scenario, the harmonic variation in the field’s energy–momentum tensor sources an oscillating component of the gravitational potential that we show can resonantly excite stellar oscillations. A mathematical framework for predicting the amplitude of these oscillations is developed, which reveals that ULDM predominantly excites p-modes of degree l = 1. An investigation of resonantly excited solar oscillations is presented, from which we conclude that dark matter induced oscillations of the Sun are likely undetectable. We discuss prospects for constraining ULDM using other stellar objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.