Abstract
We explore dark matter in the finely-tuned minimal supersymmetric standard model (MSSM) recently proposed by Arkani-Hamed and Dimopoulos. Relative to the MSSM, there are fewer particles at freeze-out, so the calculation of the relic abundance simplifies. Similarly, the predictions for direct detection of the dark matter sharpen. There is a large region of mixed bino---higgsino dark matter where the lightest supersymmetric particle will be accessible at both the LHC and future direct detection experiments, allowing for a conclusive identification of the dark matter particle. Typical dark matter-nucleon cross sections are ${10}^{\ensuremath{-}45}\ensuremath{-}{10}^{\ensuremath{-}44}\text{ }\text{ }{\mathrm{c}\mathrm{m}}^{2}$. This model also possesses a novel region where the dark matter annihilates via an $s$-channel Higgs boson resonance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.