Abstract
We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.
Highlights
We show that quantum gravity could provide a solution to the long standing problem of dark matter
Deriving an effective action for quantum gravity requires starting from general relativity and integrating out fluctuations of the graviton
We obtain a classical effective action given at second order in curvature by
Summary
Deriving an effective action for quantum gravity requires starting from general relativity and integrating out fluctuations of the graviton. There are overwhelming astrophysical and cosmological evidences that visible matter only constitutes a small fraction of the total matter of our universe and that most of it is a new form of non-relativistic dark matter which cannot be accounted for by the standard model of particle physics. We will show here that these new fields are ideal dark matter candidates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The European physical journal. C, Particles and fields
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.