Abstract
Recently, we put forward a framework where the dark matter (DM) component within virialized halos is subject to a non-local interaction originated by fractional gravity (FG) effects. In previous works, we demonstrated that such a framework can substantially alleviate the small-scale issues of the standard ΛCDM paradigm, without altering the DM mass profile predicted by N-body simulations, and retaining its successes on large cosmological scales. In this paper, we investigate further, to probe FG via the high-quality data of individual dwarf galaxies, by exploiting the rotation velocity profiles inferred from stellar and gas kinematic measurements in eight dwarf irregulars, and the projected velocity dispersion profiles inferred from the observed dynamics of stellar tracers in seven dwarf spheroidals and in the ultra-diffuse galaxy DragonFly 44. We find that FG can reproduce extremely well the rotation and dispersion curves of the analyzed galaxies, performing in most instances significantly better than the standard Newtonian setup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.