Abstract

We show that current microlensing and dynamical observations of the Galaxy permit to set interesting constraints on the Dark Matter local density and profile slope towards the galactic centre. Assuming state-of-the-art models for the distribution of baryons in the Galaxy, we find that the most commonly discussed Dark Matter profiles (viz. Navarro-Frenk-White and Einasto) are consistent with microlensing and dynamical observations, while extreme adiabatically compressed profiles are robustly ruled out. When a baryonic model that also includes a description of the gas is adopted, our analysis provides a determination of the local Dark Matter density, ρ0 = 0.20−0.56 GeV/cm3 at 1σ, that is found to be compatible with estimates in the literature based on different techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.