Abstract

The neutralino sector of the semi-constrained next-to-minimal supersymmetric standard model is explored under recent experimental constraints, with special attention to dark matter (DM) limits. The effects of the upper and lower bounds of dark matter relic density and recent direct detection constraints on spin-independent and -dependent cross-sections are thoroughly analyzed. Particularly, we show which regions of the parameter space are ruled out due to the different dark matter constraints and the corresponding model-specific parameters: λ,κ,Aλ, and Aκ. We analyze all annihilation and co-annihilation processes (with heavier neutralinos and charginos) that contribute to the dark matter relic density. The mass components of the dark matter candidate, the lightest neutralino χ˜10, are studied, and the decays of heavy neutralinos and charginos, especially χ˜20 and χ˜1+, into the lightest neutralino are examined. We impose semi-universal boundary conditions at the Grand Unified Theory scale, and require a moderate range of tanβ≲10. We find that the allowed parameter space is associated with a heavy mass spectrum in general and that the lightest neutralino is mostly Higgsino with a mass range that resides mostly between 1000 and 1500 GeV. However, smaller mass values can be achieved if the DM candidate is bino-like or singlino-like.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.