Abstract
We consider an extension of the standard model (SM) with charged singlet scalars and right handed (RH) neutrinos all at the electroweak scale. In this model, the neutrino masses are generated at three loops, which provide an explanation for their smallness, and the lightest RH neutrino, N1, is a dark matter candidate. We find that for three generations of RH neutrinos, the model can be consistent with the neutrino oscillation data, lepton flavor violating processes, N1 can have a relic density in agreement with the recent Planck data, and the electroweak phase transition can be strongly first order. We also show that the charged scalars may enhance the branching ratio h→γγ, where as h→γZ get can get few percent suppression. We also discuss the phenomenological implications of the RH neutrinos at the collider.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.