Abstract
New physics scenarios beyond the Standard Model predict the existence of milli-charged particles. So far, only spin-1/2 and spin-0 milli-charged particles have been considered in literature, leaving out the interesting case of spin-1. We propose a minimal unitary and renormalizable model of massive milli-charged vector particles. Unitarity requires that these particles are gauge bosons of a non-abelian spontaneously broken gauge symmetry. The minimal scenario then consists of an extended Standard Model gauge group SU(2) L × U(1) Y × SU(2) D together with a SU(2) D dark Higgs boson responsible for the symmetry breaking in the dark sector. By imposing that the dark Higgs multiplet has a non-vanishing milli-hypercharge, stable milli-charged spin-1 fields arise thereby providing a potential dark matter candidate. We analyse the phenomenological constraints on this scenario and discuss their implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.