Abstract

Overwhelming astronomical evidence for dark matter and absence of any laboratory evidence for it despite many dedicated searches have fueled speculation that dark matter may reside in a parallel universe interacting with the familiar universe only via gravitational interactions as well as possibly via some ultra-weak forces. In this scenario, we postulate that the visible universe co-exists with a mirror world consisting of an identical duplicate of forces and matter of our world, obeying a mirror symmetry. This picture, motivated by particle physics considerations, not only provides a natural candidate for dark matter but also has the potential to explain the matter dark matter coincidence problem, i.e., why the dark matter content of the universe is only a few times the visible matter content. One requirement for mirror models is that the mirror world must be colder than our world to maintain the success of big bang nucleosynthesis. After a review of the basic features of the model, we present several new results: first is that the consistency between the coldness of the mirror world and the explanation of the matter dark matter coincidence implies an upper bound on the inflation reheat temperature of the universe to be around 106.5 GeV. We also argue that the coldness implies the mirror world consists mainly of mirror Helium and very little mirror hydrogen, which is the exact opposite of what we see in the visible world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.