Abstract

Abstract A unified description of dark ingredients is realized by a vacuum dark fluid defined by symmetry of its stress-energy tensor and allowed by General Relativity. The symmetry is reduced compared with the maximally symmetric de Sitter vacuum, which makes vacuum dark fluid essentially anisotropic and allows its density and pressure to evolve. It represents distributed vacuum dark energy by a time-evolving and spatially inhomogeneous cosmological term, and vacuum dark matter by gravitational vacuum solitons which are regular gravitationally bound structures without horizons (dark particles or dark stars), with the de Sitter centre (Λδki) in de Sitter space (λδki).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call