Abstract

Abstract Direct exoplanet imaging via coronagraphy requires maintenance of high contrast in a dark hole for lengthy integration periods. Wavefront errors that change slowly over that time accumulate and cause systematic errors in the star’s point-spread function (PSF) that limit the achievable signal-to-noise ratio of the planet. In this paper we show that estimating the speckle drift can be achieved via intensity measurements in the dark hole together with dithering of the deformable mirrors to increase phase diversity. A scheme based on an Extended Kalman Filter and Electric Field Conjugation is proposed for maintaining the dark hole during the integration phase. For the post-processing phase, an a posteriori approach is proposed to estimate the realization of the PSF drift process and the intensity of the planet light incoherent with the speckles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.