Abstract

Abstract Grand rotation curves (GRC) within ∼ 400 kpc of M 31 and the Milky Way were constructed by combining disk rotation velocities and radial velocities of satellite galaxies and globular clusters. The GRC for the Milky Way was revised using the most recent solar rotation velocity. The derived GRCs were deconvolved into a de Vaucouleurs bulge, exponential disk, and a dark halo with a Navarro–Frenk–White (NFW) density profile by least-χ2 fitting. Comparison of the best-fitting parameters revealed similarities between the disks and bulges of the two galaxies, whereas the dark-halo mass of M 31 was found to be twice that of the Galaxy. We show that the NFW model may be a realistic approximation of the observed dark halos in these two giant spirals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call