Abstract

We present the experimental dark-field scattering studies and the simulation of plasmonic properties of isolated silver nanoislands. The nanoislands were fabricated on a soda- lime glass substrate using silver-sodium ion exchange, subsequent thermal poling and annealing of the processed glass substrate in hydrogen. The morphology of the nanoislands was characterized with atomic force microscopy and scanning electron microscopy; the dimensions were 100-180 nm in base and 80-160 nm in height. We measured and modeled dark-field scattering spectra of the silver hemiellipsoidal nanoparticles differing in size and shape. The SPR position varied from 450 nm to 730 nm depending on the particle shape and dimensions. Both experiments and simulation showed a red shift of the SPR for bigger nanoislands of the same shape. Losing the axial symmetry in nanoislands resulted in the resonance splitting, while their elongation led to an increase in the scattering of p-polarized light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.