Abstract

The development of novel electrocatalysts, especially Pt-free electrocatalysts, is of great significance for evolving hydrogen fuel cells. Two-dimensional materials have many advantages, such as large specific surface area, abundant active edges, and adjustable electronic structure, which provide broad prospects for studying high-performance electrocatalysts. In this paper, Cu2-xS@Au2S@Au nanoplates (NPs) were synthesized by cation exchange, which showed good catalytic performance toward the hydrogen evolution reaction (HER). Dark-field microscopy can help observe the process of cation exchange in real time to precisely control the synthesis of the composite materials. The synthesized Cu2-xS@Au2S@Au nanoplates (NPs) exhibited greatly enhanced plasmonic emission, resulting in accelerated chemical conversion and improved HER efficiency. Under 532 nm laser excitation, the overpotential of the HER shifted from 152 to 96 mV at a current density of -10 mA cm-2. The plasmonic nanocatalysts show exciting prospects in the field of new energy resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.