Abstract

Strong spatial confinement and highly reduced dielectric screening provide monolayer transition metal dichalcogenides with strong many-body effects, thereby possessing optically forbidden excitonic states (i.e., dark excitons) at room temperature. Herein, the interaction of surface plasmons with dark excitons in hybrid systems consisting of stacked gold nanotriangles and monolayer WS2 is explored. A narrow Fano resonance is observed when the hybrid system is surrounded by water, and the narrowing of the spectral Fano linewidth is attributed to the plasmon-enhanced decay of dark K-K excitons. These results reveal that dark excitons in monolayer WS2 can strongly modify Fano resonances in hybrid plasmon-exciton systems and can be harnessed for novel optical sensors and active nanophotonic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.