Abstract
In photosynthesis, carotenoids play important roles in light harvesting (LH) and photoprotective functions, which have been described mainly in terms of two singlet excited states of carotenoids: S(1) and S(2). In addition to the "dark" S(1) state, another dark state, S*, was recently identified and its involvement in photosynthetic functions was determined. However, there is no consistent picture concerning its nature or the mechanism of its formation. One particularly anomalous behavior obtained from femtosecond transient absorption (TA) spectroscopy is that the S*/S(1) population ratio depends on the excitation intensity. Here, we focus on the effect of nearby bacteriochlorophyll (BChl) on the relaxation dynamics of carotenoid in the LH complex. We performed femtosecond TA spectroscopy combined with pre-excitation of BChl in the reconstituted LH1 complex from Rhodospirillum rubrum S1. We observed that the energy flow from S(1), including its vibrationally excited hot states, to S* occurs only when nearby BChl is excited into Q(y), resulting in an increase in S*/S(1). We also examined the excitation-intensity dependence of S*/S(1) by conventional TA spectroscopy. A comparison between the pre-excitation effect and excitation-intensity dependence shows a strong correlation of S*/S(1) with the number of BChls excited into Q(y). In addition, we observed an increase in triplet formation as the S* population increased, indicating that S* is an electronic excited state that is the precursor to triplet formation. Our findings provide an explanation for observed spectroscopic features, including the excitation-intensity dependences debated so far, and offer new insights into energy deactivation mechanisms inherent in the LH antenna.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.