Abstract

ABSTRACT We describe and test the fiducial covariance matrix model for the combined two-point function analysis of the Dark Energy Survey Year 3 (DES-Y3) data set. Using a variety of new ansatzes for covariance modelling and testing, we validate the assumptions and approximations of this model. These include the assumption of Gaussian likelihood, the trispectrum contribution to the covariance, the impact of evaluating the model at a wrong set of parameters, the impact of masking and survey geometry, deviations from Poissonian shot noise, galaxy weighting schemes, and other sub-dominant effects. We find that our covariance model is robust and that its approximations have little impact on goodness of fit and parameter estimation. The largest impact on best-fitting figure-of-merit arises from the so-called fsky approximation for dealing with finite survey area, which on average increases the χ2 between maximum posterior model and measurement by $3.7{{\ \rm per\ cent}}$ (Δχ2 ≈ 18.9). Standard methods to go beyond this approximation fail for DES-Y3, but we derive an approximate scheme to deal with these features. For parameter estimation, our ignorance of the exact parameters at which to evaluate our covariance model causes the dominant effect. We find that it increases the scatter of maximum posterior values for Ωm and σ8 by about $3{{\ \rm per\ cent}}$ and for the dark energy equation-of-state parameter by about $5{{\ \rm per\ cent}}$.

Highlights

  • Our understanding of the Universe has become much more accurate in the past decades due to a massive amount of observational data collected through different probes, such as the cosmic microwave background (CMB; see e.g. Planck Collaboration 2020), Big Bang Nucleosynthesis (BBN; see e.g. Fields et al 2020), type IA supernovae, number counts of clusters of galaxies, the correlation of galaxy positions, and that of their measured shape

  • In this paper we have presented the fiducial covariance model of the Dark Energy Survey Year 3 (DES-Y3) joint analysis of cosmic shear, galaxygalaxy lensing and galaxy clustering correlation functions

  • We investigated how the assumptions and approximations of that model impact the distribution of maximum posterior χ2 and maximum posterior estimates of cosmological parameters

Read more

Summary

Results

O. Friedrich,1,2 F. Andrade-Oliveira,3,4 H. Camacho,3,4 O. Alves,5,3 R. Rosenfeld,6,4 J. Sanchez,7 X. Fang,8 T. F. Eifler,8,9 E. Krause,8 C. Chang,10,11 Y. Omori,12 A. Amon,12 E. Baxter,13 J. Elvin-Poole,14,15 D. Huterer,5 A. Porredon,14,16,17 J. Prat,10 V. Terra,3 A. Troja,6,4 A. Alarcon,18 K. Bechtol,19 G. M. Bernstein,20 R. Buchs,21 A. Campos,22 A. Carnero Rosell,23,24 M. Carrasco Kind,25,26 R. Cawthon,19 A. Choi,14 J. Cordero,27 M. Crocce,16,17 C. Davis,12 J. DeRose,28,29 H. T. Diehl,7 S. Dodelson,22 C. Doux,20 A. Drlica-Wagner,10,7,11 F. Elsner,30 S. Everett,29 P. Fosalba,16,17 M. Gatti,31 G. Giannini,31 D. Gruen,32,12,21 R. A. Gruendl,25,26 I. Harrison,27 W. G. Hartley,33 B. Jain,20 M. Jarvis,20 N. MacCrann,34 J. McCullough,12 J. Muir,12 J. Myles,32 S. Pandey,20 M. Raveri,11 A. Roodman,12,21 M. Rodriguez-Monroy,35 E. S. Rykoff,12,21 S. Samuroff,22 C. Sánchez,20 L. F. Secco,20 I. Sevilla-Noarbe,35 E. Sheldon,36 M. A. Troxel,37 N. Weaverdyck,5 B. Yanny,7 M. Aguena,38,4 S. Avila,39 D. Bacon,40 E. Bertin,41,42 S. Bhargava,43 D. Brooks,30 D. L. Burke,12,21 J. Carretero,31 M. Costanzi,44,45 L. N. da Costa,4,46 M. E. S. Pereira,5 J. De Vicente,35 S. Desai,47 A. E. Evrard,48,5 I. Ferrero,49 J. Frieman,7,11 J. García-Bellido,39 E. Gaztanaga,16,17 D. W. Gerdes,48,5 T. Giannantonio,50,1 J. Gschwend,4,46 G. Gutierrez,7 S. R. Hinton,51 D. L. Hollowood,29 K. Honscheid,14,15 D. J. James,52 K. Kuehn,53,54 O. Lahav,30 M. Lima,38,4 M. A. G. Maia,4,46 F. Menanteau,25,26 R. Miquel,55,31 R. Morgan,19 A. Palmese,7,11 F. Paz-Chinchón,50,26 A. A. Plazas,56 E. Sanchez,35 V. Scarpine,7 S. Serrano,16,17 M. Soares-Santos,5 M. Smith,57 E. Suchyta,58 G. Tarle,5 D. Thomas,40 C. To,32,12,21 T. N. Varga,59,60 J. Weller,59,60 and R.D. Wilkinson43

INTRODUCTION
COVARIANCE VALIDATION STRATEGY AND SUMMARY OF THE RESULTS
THE 3X2-POINT DATA VECTOR
Fiducial DES-Y3 Covariance
Gaussian covariance
Analytic lognormal covariance model
Comparisons among covariances
IMPACT OF COVARIANCE ERRORS ON A LINEARIZED GAUSSIAN LIKELIHOOD
Linearized likelihoods
Impact on the width of the likelihood and scatter of best fit parameters
Distribution of χ2 when fitting for parameters
EXPLORING DIFFERENT EFFECTS IN THE COVARIANCE MODELLING
Gaussian likelihood assumption
Modelling of connected 4-point function in covariance
Exact angular bin averaging
RSD and Limber approximation and redshift space distortion effects
Effect of the mask geometry
Non-Poissonian shot noise
Cosmology dependence of the covariance model
Random point shot-noise
6.10 Effective densities and effective shape-noise
6.10.1 Galaxy clustering
6.10.2 Galaxy-galaxy lensing
6.10.4 Testing validity of effective shape noise
A SIMPLE χ2 TEST
DISCUSSIONS AND CONCLUSIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call