Abstract

Dark energy cosmology is considered in a modified Gauss-Bonnet (GB) model of gravity where an arbitrary function of the GB invariant, $f(G)$, is added to the general relativity action. We show that a theory of this kind is endowed with a quite rich cosmological structure: it may naturally lead to an effective cosmological constant, quintessence, or phantom cosmic acceleration, with a possibility for the transition from deceleration to acceleration. It is demonstrated in the paper that this theory is perfectly viable, since it is compliant with the solar system constraints. Specific properties of $f(G)$ gravity in a de Sitter (dS) universe, such as dS and SdS solutions, their entropy, and its explicit one-loop quantization are studied. The issue of a possible solution of the hierarchy problem in modified gravities is also addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.