Abstract

The dark energy from virtual gravitons is consistent with observational data on supernovas with the same accuracy as the ΛCDM model. The fact that virtual gravitons are capable of producing a de Sitter accelerated expansion of the FLRW universe was established in 2008 (see references). The combination of conformal non-invariance with zero rest mass of gravitons (unique properties of the gravitational field) leads to the appearance of graviton dark energy in a mater-dominated era; this fact explains the relatively recent appearance of the dark energy and answers the question “Why now?”. The transition redshifts (where deceleration is replaced by acceleration) that follow from the graviton theory are consistent with model-independent transition redshifts derived from observational data. Prospects for testing the GCDM model (the graviton model of dark energy where G stands for gravitons) and comparison with the ΛCDM model are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.