Abstract
The HgCdTe avalanche photodiode (APD) with built-in gain mechanism has great application prospects in the field of weak light signal detection. Any dark current will be converted into noise affecting the work efficiency of photodetectors. Therefore, the study of dark current mechanism is an important way to obtain high performance HgCdTe APD. In this paper, the photoelectric detection mechanism of planar junction electron injection HgCdTe APD is systematically studied, focusing on two aspects of structural optimization design and performance improvement. The dependence of device performance parameters on structure parameters is obtained by comparing the simulation results and experimental results. The lower the trap concentration, the smaller the dark current under small reverse bias voltage is, and the higher the operation voltage is. The dark current density of HgCdTe APD array is about 10-8 A/cm2 under small bias voltage. In addition to the material parameters, the dark current is mainly related to the internal electric field, which is affected by the width and doping concentration of the depletion region. The results show that device structure is the major determinant for the performance difference of HgCdTe APD. The structural optimization direction of high-performance HgCdTe APD is to further suppress the local electric field and reduce the dark current by adjusting the process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.