Abstract

Typical wireless sensor networks (WSNs) applications are characterized by a certain number of different requirements such as: data accuracy, localization, reputation, security, and confidentiality. Moreover, being often battery powered, WSNs face the challenge of ensuring privacy and security despite power consumption limitations. When the application scenario allows their use, data aggregation techniques can significantly reduce the amount of data exchanged over the wireless link at the price of an increased computational complexity and the potential exposition to data integrity risks in the presence of malicious nodes. In this paper, we propose DARE, an hybrid architecture combining WSNs with the wireless mesh networking paradigm in order to provide secure data aggregation and node reputation in WSNs. Finally, the use of a secure verifiable multilateration technique allows the network to retain the trustworthiness of aggregated data even in the presence of malicious node. Extensive performance evaluations carried out using simulations as well as a real-world prototype implementation, show that DARE can effectively reduce the amount of data exchanged over the wireless medium delivering up to 50% battery lifetime improvement to the wireless sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.