Abstract

Parallel Darcy–Forchheimer flow in a horizontal porous layer with an isothermal top boundary and a bottom boundary, which is subject to a third kind boundary condition, is discussed by taking into account the effect of viscous dissipation. This effect causes a nonlinear temperature profile within the layer. The linear stability of this nonisothermal base flow is then investigated with respect to the onset of convective rolls. The third kind boundary condition on the bottom boundary plane may imply adiabatic/isothermal conditions on this plane when the Biot number is either zero (adiabatic) or infinite (isothermal). The solution of the linear equations for the perturbation waves is determined by using a fourth order Runge–Kutta scheme in conjunction with a shooting technique. The neutral stability curve and the critical value of the governing parameter R=GePe2 are obtained, where Ge is the Gebhart number and Pe is the Péclet number. Different values of the orientation angle between the direction of the basic flow and the propagation axis of the disturbances are also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.