Abstract
On the basis of Darcy–Brinkman model, linear stability analysis is used to study bio-thermal convection in a suspension of gyrotactic microorganisms in a highly porous medium heated from below. A Galerkin method is performed to solve the governing equations generating a correlation between the traditional thermal Rayleigh number and the critical value of the bioconvection Rayleigh number. The effects of three variables including the bioconvection Peclet number, the gyrotaxis number and the modified Darcy number on both the wave number and the critical bioconvection Rayleigh number are analyzed and shown graphically. Results indicate that the critical bioconvection Rayleigh number becomes larger with increasing Darcy number.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.