Abstract

Synopsis The dynamic equation of motion that governs the laminar flow of water through soils is the empirical equation of Darcy. According to Darcy's equation the velocity of the flowing water is proportional to the hydraulic gradient under which the water is flowing, with the constant of proportionality being the coefficient of permeability. The interesting question arising is whether or not the coefficient of permeability is a scalar quantity (having only a magnitude) or a vector (having both magnitude and direction). It is proved, in the present paper, that the permeability coefficient is neither a scalar nor a vector but a symmetric tensor of second rank. The fact that the permeability tensor is symmetric gives rise to great simplifications and permits a simple graphical construction of the tensor ellipsoid. Having the tensor ellipsoid, the determination of the direction at which the water will flow under a known imposed hydraulic gradient can be found graphically. In case of isotropic soils (the permeability coefficient has the same value along any direction) the ellipsoid reduces to a sphere and the tensor becomes a scalar. In the general case of anisotropic soils the permeability tensor is an entity with nine elements, six of which are independent representing pure extension or contraction along the three principal coordinate axes, thus transforming the permeability sphere into an ellipsoid and vice versa. It should be noted that in anisotropic soils the only directions along which the flow takes place in the direction of the hydraulic gradient are those of the principal axes of the tensor ellipsoid. Permeability tests were conducted on anisotropic sandstone samples taken at different directions with respect to rectangular coordinates. The permeability coefficient values plotted on a two-dimensional polar coordinate graph paper give rise to an ellipse substantiating therefore the tensor concept of the permeability coefficient. The graphical construction of the tensor ellipse and the use of it in order to obtain the direction of flow by knowing the direction of the hydraulic gradient is also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.