Abstract

Present article aims to investigate the heat and mass transfer developments in boundary layer Jeffery nanofluid flow via Darcy-Forchheimer relation over a stretching surface. A viscous Jeffery naonfluid saturates the porous medium under Darcy-Forchheimer relation. A variable magnetic effect normal to the flow direction is applied to reinforce the electro-magnetic conductivity of the nanofluid. However, small magnetic Reynolds is considered to dismiss the induced magnetic influence. The so-formulated set of governing equations is converted into set of nonlinear ODEs using transformations. Homotopy approach is implemented for convergent relations of velocity field, temperature distribution and the concentration of nanoparticles. Impact of assorted fluid parameters such as local inertial force, Porosity factor, Lewis and Prandtl factors, Brownian diffusion and Thermophoresis on the flow profiles is analyzed diagrammatically. The drag force (skin-friction) and heat-mass flux is especially analyzed through numerical information compiled in tabular form. It has been noticed that the inertial force and porosity factor result in decline of momentum boundary layer but, the scenario is opposite for thermal profile and solute boundary layer. The concentration of nanoparticles increases with increased porosity and inertial effect however, a significant reduction is detected in mass flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.