Abstract

This article investigates the second law of thermodynamics for chemically reactive Sisko nanofluid by a rotating disk saturated with non-Darcy porous medium. Thermophoresis and Brownian motion on irreversibility has been examined through Buongiorno model. The novel features of nonlinear thermal radiation, Joule heating, MHD and non-uniform heat source/sink are accounted. Modified Arrhenius model is executed to characterize the impact of activation energy. The governing flow equations are solved and validated numerically by adopting Runge–Kutta–Fehlberg method. It is noticed from the present analysis that irreversibility rate and Bejan number have reverse behavior for Brinkman number. Growing behavior of concentration is witnessed for greater estimations of activation energy variable. Total entropy generation has significant impact on reaction rate constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call