Abstract

In 1882 Darboux proposed a systematic algebraic approach to the solution of the linear Sturm-Liouville problem. In this book, the authors develop Darboux's idea to solve linear and nonlinear partial differential equations arising in soliton theory: the non-stationary linear Schrodinger equation, Korteweg-de Vries and Kadomtsev-Petviashvili equations, the Davey Stewartson system, Sine-Gordon and nonlinear Schrodinger equations 1+1 and 2+1 Toda lattice equations, and many others. By using the Darboux transformation, the authors construct and examine the asymptotic behaviour of multisoliton solutions interacting with an arbitrary background. In particular, the approach is useful in systems where an analysis based on the inverse scattering transform is more difficult. The approach involves rather elementary tools of analysis and linear algebra so that it will be useful not only for experimentalists and specialists in soliton theory, but also for beginners with a grasp of these subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.