Abstract

Efforts have been put into investigating a variable-coefficient coherently coupled nonlinear Schrodinger system with the alternate signs of nonlinearities, describing the propagation of the waves in the nonlinear birefringent optical fiber. Via the Lax pair, Darboux transformation for the system is derived. Then, we derive the vector one- and two-soliton solutions. Figures are displayed to help us study the properties of the vector solitons: with the strength of the four-wave mixing terms γ(t) as a constant, the vector soliton propagates with the unvarying velocity and amplitude; with γ(t) being a time-dependent function, amplitude and velocity of the vector soliton keep varying during the propagation; bell- and M-shaped solitons can both be observed in q2 mode, while we just observe the bell-shaped soliton in q1 mode, where q1 and q2 are the two slowly varying envelopes of the propagating waves; head-on and overtaking interactions between the vector two solitons are both presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.