Abstract

We propose an algorithm for obtaining the spectra of Casimir (Laplace) operators on Lie groups. We prove that the existence of the normal polarization associated with a linear functional on the Lie algebra is necessary and sufficient for the transition to local canonical Darboux coordinates (p, q) on the coadjoint representation orbit that is linear in the “momenta.” We show that the λ-representations of Lie algebras (which are used, in particular, in integrating differential equations) result from the quantization of the Poisson bracket on the coalgebra in canonical coordinates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.