Abstract

SUMMARY 1. Negative effects of zooplankton on the availability of phosphorus (P) for phytoplankton as a result of the retention of nutrients in zooplankton biomass and the sedimentation of exoskeletal remains after moulting, have been recently proposed.2. In a mesocosm study, the relative importance of these mechanisms was tested for the freshwater cladoceran Daphnia hyalina×galeata. A total of 13 mesocosm bags was suspended in a mesotrophic German lake during summer 2000 and fertilised with inorganic P in order to obtain a total nitrogen to total P ratio closer to the Redfield ratio. D. hyalina×galeata was then added at a logarithmically scaled density gradient of up to 40 ind. L−1. Zooplankton densities, dissolved inorganic, particulate organic (seston <100 μm), as well as total nutrient concentrations were monitored. Additionally, nutrient concentrations of sediment water removed from the bottom of the mesocosm bags via a manual pump were determined.3. Seston carbon (C), seston P and total P were significantly negatively correlated with Daphnia densities. The amount of particulate P (∼5–6 μg P L−1) sequestered from the seston compartment by Daphnia corresponded roughly to the increase of zooplankton biomass (population growth). Soluble reactive phosphorous (SRP) was at all times high (∼25–35 μg P L−1) and possibly unavailable to phytoplankton as a result of P adsorption to calcite during a calcite precipitation event (whiting). P concentrations determined in sediment water were generally <60 μg P m−2 and thus never exceeded 1% of the total amount of P bound in particulate matter of the overlying water column.4. Seston C : P ratios followed a polynomial second‐order function: At Daphnia densities <40 ind. L−1 a positive linear relationship was evident, which is explained by the stronger reduction of P compared with C in seston, and transfer of seston P to zooplankton. Highest seston C : P ratios of ∼300 : 1 were observed at Daphnia densities of ∼30–50 ind. L−1, which is in agreement with proposed threshold values limiting Daphnia reproductive growth. At Daphnia densities >40–50 ind. L−1 C : P ratios were decreased because of the strong reduction of seston C at close to constantly low seston P‐values of ∼3–4 μg P L−1.5. At least for Daphnia, it may be concluded that – unlike population growth – the sedimentation of faecal pellets and carapaces after moulting seem negligible processes in pelagic phosphorus dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call