Abstract

BackgroundMelanoma is one of the most invasive and aggressive types of cancer with a very poor prognosis. Surgery remains the most efficient treatment prior melanoma invasion and metastasis formation. However, therapy becomes a challenge once the cancer cells colonized other tissues. At present, there are two main classes of therapies acting with a certain efficiency on metastatic melanoma: immune check point inhibitors (anti-PD1/PDL1) and targeted therapy such as Vemurafenib. Unfortunately, these therapies are not fully responsive, induce resistance and/or generate unwanted side effects. In this respect, it is important to continue to discover new cancer therapeutics. Here, we show that daphnane diterpenes type of compounds can prevent melanoma metastasis by inhibiting metastasis-associated matrix metalloproteinases expression without cytotoxicity.MethodsEvaluation of the anti-metastasis effect of daphnane diterpenes-rich Thymelaea hirsuta extract (TH) and its bioactive component gnidilatidin was carried out in vitro using B16 murine melanoma cells and in vivo using male C57BL/6 J mice. Global gene expression in B16 cells was done using DNA microarray, validated using real-time PCR, to further understand the effect of daphnane diterpenes, specifically daphnane diterpenoid gnidilatidin.ResultsOral administration of daphnane diterpenes-rich Thymelaea hirsuta extract (TH) suppressed MMP2 and MMP9 expression, decreasing lung tumor in mice injected with B16 murine melanoma cells. Validation of these observations in vitro showed reduced B16 cells migration, adhesion, and invasion. Results of microarray analysis of B16 cells treated with daphnane diterpenoid gnidilatidin from TH revealed an upregulation of tumor suppressor Egr1 while inhibiting metastasis-associated genes Id2 and Sytl2 expression. A downregulation of the melanoma oncogene microphthalmia-associated transcription factor (Mitf) was observed, and most likely caused by the inhibition of Id2, a gene that regulated HLH transcription factors such as MITF and also reported to promote tumor cell migration and invasion.ConclusionsDaphnane diterpenes have inhibitory effect on the metastatic potential of B16 melanoma cells, and the results of this study provided evidence for their potential for use in the prevention and inhibition of melanoma metastasis.

Highlights

  • Melanoma is one of the most invasive and aggressive types of cancer with a very poor prognosis

  • We investigated the effects of daphnane diterpenes-rich T. hirsuta extract on the metastatic potential of B16 murine melanoma cells (B16F10) cells in vivo, using syngeneic male C57BL/6 J mice, and in vitro using the B16F10 melanoma cells known to be malignant melanoma cells that are stable in their metastatic potential

  • Daphnane diterpenes suppressed B16F10 cells lung colonization To investigate the effect of daphnane diterpenes on tumor cell adhesion to mice lungs, the lung tumors that formed from tail vein-injected B16F10 cells was counted after 3 weeks of oral administration with 50 mg/kg of daphnane diterpenes-rich T. hirsuta extract (TH) or 70 mg/kg/day dacarbazine (DTIC), the positive control

Read more

Summary

Introduction

Melanoma is one of the most invasive and aggressive types of cancer with a very poor prognosis. There are two main classes of therapies acting with a certain efficiency on metastatic melanoma: immune check point inhibitors (anti-PD1/PDL1) and targeted therapy such as Vemurafenib. These therapies are not fully responsive, induce resistance and/or generate unwanted side effects. In this respect, it is important to continue to discover new cancer therapeutics. Occurring daphnane-type diterpene orthoesters have antileukemia, anticancer, toxic, or neurotrophic effects [12] and provide an alternative source of cancer therapeutics. Since TH contains not just daphnane diterpenes, the possible molecular mechanism underlying the effect of TH was determined in vitro using one of TH components - daphnane diterpene gnidilatidin

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.