Abstract
We assessed whether the SGLT-2 inhibitor dapagliflozin (Dapa) attenuates the upregulation of the cardiac Na+/H+ exchanger (NHE-1) in vitro in mouse cardiofibroblasts stimulated with lipopolysaccharides (LPS) and whether this effect is dependent on adenosine monophosphate kinase (AMPK) activation. Mouse cardiofibroblasts were exposed for 16h to Dapa (0.4μM), AMPK activator (A769662 (10μM)), AMPK inhibitor (compound C (CC) (10μM)), an SGLT-1 and SGLT-2 inhibitor (phlorizin (PZ) (100μM)), Dapa+CC, or Dapa+PZ, and then stimulated with LPS (10ng/ml) for 3h. NHE-1 mRNA levels were assessed by rt-PCR and total AMPK, phosphorylated-AMPK (P-AMPK), NHE-1, and heat shock protein-70 (Hsp70) protein levels in the whole cell lysate by immunoblotting. In addition, NHE-1 protein levels attached to Hsp70 were assessed by immunoprecipitation. Exposure to LPS significantly reduced P-AMPK levels in the cardiofibroblasts. A769662 and Dapa equally increased P-AMPK. The effect was blocked by CC. Phlorizin had no effect on P-AMPK. LPS exposure significantly increased NHE-1 mRNA levels. Both Dapa and A769662 equally attenuated this increase. The effect of Dapa was blocked with CC. Interestingly, none of the compounds significantly affected NHE-1 and Hsp70 protein levels in the whole cell lysate. However, LPS significantly increased the concentration of NHE-1 attached to Hsp70. Both Dapa and A69662 attenuated this association and CC blocked the effect of Dapa. Again, phlorizin had no effect and did not alter the effect of Dapa. Dapa increases P-AMPK in cardiofibroblasts exposed to LPS. Dapa attenuated the increase in NHE-1 mRNA and the association between NHE-1 and Hsp70. This effect was dependent on AMPK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.