Abstract

We use eighteen timescale-synchronised near-surface temperature reconstructions spanning 10–50 thousand years before present to clarify the regional expression of Dansgaard-Oeschger (D-O) and Heinrich (H) events in the North Atlantic. The North Atlantic Drift region shows D-O temperature variations of ca. 2–5° with Greenland-like structure. The Western Iberian Margin region also shows Greenland-like structure, but with more pronounced surface cooling between interstadials and Heinrich stadials (ca. 6–9 °C) than between interstadials and non-Heinrich stadials (ca. 2–3 °C). The southern Nordic Seas show smaller D-O temperature anomalies (ca. 1–2 °C) that appear out of phase with Greenland. These spatial patterns are replicated in a new global climate model simulation that features unforced (D-O-like) and freshwater forced (H-like) abrupt climate changes. The model simulations and observations suggest consistently that the spatial expression and amplitude of D-O and H event temperature anomalies are dominated by coupled changes in the Atlantic Meridional Overturning, sea ice extent, polar front position and thermocline structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.