Abstract

Atomic-scale Boolean logic gates (LGs) with two inputs and one output (i.e. OR, NOR, AND, NAND) were designed on a Si(100)-(2 × 1)–H surface and connected to the macroscopic scale by metallic nano-pads physisorbed on the Si(100)-(2 × 1)–H surface. The logic inputs are provided by saturating and unsaturating two surface Si dangling bonds, which can, for example, be achieved by adding and extracting two hydrogen atoms per input. Quantum circuit design rules together with semi-empirical elastic-scattering quantum chemistry transport calculations were used to determine the output current intensity of the proposed switches and LGs when they are interconnected to the metallic nano-pads by surface atomic-scale wires. Our calculations demonstrate that the proposed devices can reach ON/OFF ratios of up to 2000 for a running current in the 10 µA range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.