Abstract
Ethnopharmacological relevanceVascular endothelial dysfunction (VED) is recognized as a key triggering diabetic vascular complications. Danggui Liuhuang Decoction (DGLHD) has shown potential in mitigating these complications. However, the clinical efficacy of DGLHD in enhancing endothelial function, as well as the molecular mechanisms underlying its alleviation of Type 2 Diabetes-Related Vascular Endothelial Dysfunction (T2DM-VED), remains insufficiently understood. Aim of the studyThis study aims to validate the therapeutic efficacy of DGLHD in ameliorating T2DM-VED through clinical research. Furthermore it seeks to analyze the pharmacodynamic basis and molecular mechanisms of DGLHD, elucidating the biological processes through which DGLHD alleviates VED in type 2 diabetes mellitus (T2DM). Materials and methodsPatients diagnosed with "Yin deficiency with hyperactive fire syndrome", who are at a high risk for atherosclerotic cardiovascular disease (ASCVD) associated with T2DM, were recruited for this study. The effect of DGLHD on vascular endothelial function in T2DM was assessed by measuring the levels of pro-inflammatory factors through enzyme-linked immunosorbent assay (ELISA) and flow-mediated dilation (FMD). The primary components of DGLHD were analyzed using the UHPLC-Q-Exactive Orbitrap system. Potential therapeutic targets of DGLHD were predicted using network pharmacology and molecular docking analysis. To validate the mechanism of DGLHD on T2DM-VED, endothelial injury and inflammation cell models were established using human umbilical vein endothelial cells (HUVECs). A mouse model of diabetic endothelial injury was also developed to observe the effects of DGLHD on pro-inflammatory factors and vascular endothelial factors were observed through immunohistochemistry. Additionally, the effects on the JAK2/STAT3 signaling pathway were observed through Western blot experiments. ResultsDGLHD was found to contain 201 active components. Network pharmacology analysis indicated that the treatment of T2DM-VED with DGLHD is associated with modulation of the JAK2/STAT3 signaling pathway. Molecular docking analysis demonstrated that small molecules in DGLHD interact with JAK2 and STAT3. Our clinical study demonstrated that DGLHD significantly reduces the levels of pro-inflammatory factors and improves FMD readings in diabetic patients, thereby alleviating T2DM-VED. DGLHD was shown to inhibit the phosphorylation of JAK2 and STAT3, which blocks the JAK2/STAT3 signaling pathway transmission, reducing the release of pro-inflammatory and vascular endothelial growth factors, and preventing the inflammatory response in vivo and in vitro. ConclusionThis study demonstrates the potential efficacy of DGLHD in improving endothelial function in T2DM patients at high risk for ASCVD. By inhibiting the JAK2/STAT3 signaling pathway, DGLHD effectively reduces the release of pro-inflammatory factors and vascular endothelial growth factors, alleviating VED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.