Abstract

Four specimens of the olive sea snake, Aipysurus laevis, were collected off the coast of Western Australia, and the venom proteome was characterized and quantitatively estimated by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses. A. laevis venom is remarkably simple and consists of phospholipases A2 (71.2%), three-finger toxins (3FTx; 25.3%), cysteine-rich secretory proteins (CRISP; 2.5%), and traces of a complement control module protein (CCM; 0.2%). Using a Toxicity Score, the most lethal components were determined to be short neurotoxins. Whole venom had an intravenous LD50 of 0.07 mg/kg in mice and showed a high phospholipase A2 activity, but no proteinase activity in vitro. Preclinical assessment of neutralization and ELISA immunoprofiling showed that BioCSL Sea Snake Antivenom was effective in cross-neutralizing A. laevis venom with an ED50 of 821 μg venom per mL antivenom, with a binding preference towards short neurotoxins, due to the high degree of conservation between short neurotoxins from A. laevis and Enhydrina schistosa venom. Our results point towards the possibility of developing recombinant antibodies or synthetic inhibitors against A. laevis venom due to its simplicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.