Abstract
The plant elicitor peptides (Peps), a family of damage/danger-associated molecular patterns (DAMPs), are perceived by two receptors, PEPR1 and PEPR2, and contribute to plant defense against pathogen attack and abiotic stress. Here, we show that the Peps-PEPR signaling pathway functions in stomatal immunity by activating guard cell anion channels in Arabidopsis thaliana The mutant plants lacking both PEPR1 and PEPR2 (pepr1 pepr2) displayed enhanced bacterial growth after being sprayed with Pseudomonas syringae pv tomato (Pst) DC3000, but not after pathogen infiltration into leaves, implicating PEPR function in stomatal immunity. Indeed, synthetic Arabidopsis Peps (AtPeps) effectively induced stomatal closure in wild-type but not pepr1 pepr2 mutant leaves, suggesting that the AtPeps-PEPR signaling pathway triggers stomatal closure. Consistent with this finding, patch-clamp recording revealed AtPep1-induced activation of anion channels in the guard cells of wild-type but not pepr1 pepr2 mutant plants. We further identified two guard cell-expressed anion channels, SLOW ANION CHANNEL1 (SLAC1) and its homolog SLAH3, as functionally overlapping components responsible for AtPep1-induced stomatal closure. The slac1 slah3 double mutant, but not slac1 or slah3 single mutants, failed to respond to AtPep1 in stomatal closure assays. Interestingly, disruption of OPEN STOMATA1 (OST1), an essential gene for abscisic acid-triggered stomatal closure, did not affect the AtPep1-induced anion channel activity and stomatal response. Together, these results illustrate a DAMP-triggered signaling pathway that, unlike the flagellin22-FLAGELLIN-SENSITIVE2 pathway, triggers stomata immunity through an OST1-independent mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.