Abstract

Reconstructing 3D human shape and pose from a monocular image is challenging despite the promising results achieved by most recent learning based methods. The commonly occurred misalignment comes from the facts that the mapping from image to model space is highly non-linear and the rotation-based pose representation of the body model is prone to result in drift of joint positions. In this work, we present the Decompose-and-aggregate Network (DaNet) to address these issues. DaNet includes three new designs, namely UVI guided learning, decomposition for fine-grained perception, and aggregation for robust prediction. First, we adopt the UVI maps, which densely build a bridge between 2D pixels and 3D vertexes, as an intermediate representation to facilitate the learning of image-to-model mapping. Second, we decompose the prediction task into one global stream and multiple local streams so that the network not only provides global perception for the camera and shape prediction, but also has detailed perception for part pose prediction. Lastly, we aggregate the message from local streams to enhance the robustness of part pose prediction, where a position-aided rotation feature refinement strategy is proposed to exploit the spatial relationship between body parts. Such a refinement strategy is more efficient since the correlations between position features are stronger than that in the original rotation feature space. The effectiveness of our method is validated on the Human3.6M and UP-3D datasets. Experimental results show that the proposed method significantly improves the reconstruction performance in comparison with previous state-of-the-art methods. Our code is publicly available at https://github.com/HongwenZhang/DaNet-3DHumanReconstrution .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.