Abstract

Music perception of cochlear implants (CI) users is constrained by the absence of salient musical pitch cues crucial for melody identification, but is made possible by timing cues that are largely preserved by current devices. While musical timing cues, including beats and rhythms, are a potential route to music learning, it is not known what extent they are perceptible to CI users in complex sound scenes, especially when pitch and timbral features can co-occur and obscure these musical features. The task at hand, then, becomes one of optimizing the available timing cues for young CI users by exploring ways that they might be perceived and encoded simultaneously across multiple modalities. Accordingly, we examined whether training tasks that engage active music listening through dance might enhance the song identification skills of deaf children with CIs. Nine CI children learned new songs in two training conditions: (a) listening only (auditory learning), and (2) listening and dancing (auditory-motor learning). We examined children's ability to identify original song excerpts, as well as mistuned, and piano versions from a closed-set task. While CI children were less accurate than their normal hearing peers, they showed greater song identification accuracies in versions that preserved the original instrumental beats following learning that engaged active listening with dance. The observed performance advantage is further qualified by a medium effect size, indicating that the gains afforded by auditory-motor learning are practically meaningful. Furthermore, kinematic analyses of body movements showed that CI children synchronized to temporal structures in music in a manner that was comparable to normal hearing age-matched peers. Our findings are the first to indicate that input from CI devices enables good auditory-motor integration of timing cues in child CI users for the purposes of listening and dancing to music. Beyond the heightened arousal from active engagement with music, our findings indicate that a more robust representation or memory of musical timing features was made possible by multimodal processing. Methods that encourage CI children to entrain, or track musical timing with body movements, may be particularly effective in consolidating musical knowledge than methods that engage listening only.

Highlights

  • When asked to explain how she attains the elusive musicality in her dancing, Makarova (1975), one of the most celebrated classical dancers of the twentieth century replied, “Even the ears must dance” (p. 65)

  • Our goal in the present study was to ascertain whether auditory and motor processes engaged in dancing and music listening, in comparison to passive listening, influenced song learning in cochlear implants (CI) children

  • To assess whether children moved in synchrony to the beat of songs, we examined whether the body movement frequencies matched the beat frequencies of the songs

Read more

Summary

Introduction

When asked to explain how she attains the elusive musicality in her dancing, Makarova (1975), one of the most celebrated classical dancers of the twentieth century replied, “Even the ears must dance” (p. 65). We have a natural tendency to move to music, and we do so with ease, and without explicit training. This involves the coordinated interplay between different sensory systems that enables us to gain meaningful and multifaceted musical experiences. For an increasing number of profoundly deaf children, this sensory deficit is partially offset by cochlear implants (CIs). These are surgically implanted sensory prostheses that generate hearinglike sensations by means of an electrode array that stimulates the auditory nerve with electrical patterns that code the acoustic features of sound

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call