Abstract

Automated 12-lead electrocardiographic (ECG) classification algorithms play an important role in the diagnosis of clinical arrhythmias. Current methods that perform well in the field of automatic ECG classification are usually based on Convolutional Neural Networks (CNN) or Transformer. However, due to the intrinsic locality of convolution operations, CNN can't extract long-dependence between series. On the other side, the Transformer design includes a built-in global self-attention mechanism, but it doesn't pay enough attention to local features. In this paper, we propose DAMS-Net, which combines the advantages of Transformer and CNN, introducing a spatial attention module and a channel attention module using a CNN-Transformer hybrid encoder to adaptively focus on the significant features of global and local parts between space and channels. In addition, our proposal fuses multi-scale information to capture high and low-level semantic information by skip-connections. We evaluate our method on the 2018 Physiological Electrical Signaling Challenge dataset, and our proposal achieves a precision rate of 83.6%, a recall rate of 84.7%, and an F1-score of 0.839. The classification performance is superior to all current single-model methods evaluated in this dataset. The experimental results demonstrate the promising application of our proposed method in 12-lead ECG automatic classification tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.